
Carnegie Mellon
Software Engineering Institute

A Structured
Approach to
Classifying Security
Vulnerabilities

Robert C. Seacord

Allen D. Householder

January 2005

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

TECHNICAL NOTE
CMU/SEI-2005-TN-003

CamegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

A Structured
Approach to
Classifying Security
Vulnerabilities
CMU/SEI-2005-TN-003

Robert C. Seacord

Allen Householder

January 2005

Survivable Systems

20050323 024
Unlimited distribution subject to the copyright.

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.

Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative

works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or
disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government
purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract v"

1 Introduction 1

1.1 Concepts 2

1.2 Objects and Roles 2

1.3 Existing Approaches 3

1.4 Properties 5
1.5 Classification Issues 8

1.6 Credentials 9

1.7 Attribute Sets 10

2 Security-Related Software Attributes 12

2.1 Source Code 12
2.2 Software Components 15

2.3 Program Versions 16

2.4 Mitigations 16
2.5 Security Flaws 16
2.6 Vulnerability Properties 16

2.7 Exploit Properties 16

3 Representation and Automation 18
3.1 Representing Properties 18
3.2 Comparative Analysis of Vulnerabilities 20

4 Conclusions 23

References 25

CMU/SEI-2005-TN-003

CMU/SEI-2005-TN-003

List of Figures

Figure 1: Objects, Roles, and Relationships 3

Figure 2: CERT Vulnerability Taxonomy (subset) 4

Figure 3: Sample Vulnerability Attributes 5

Figure 4: Overwriting Boundary Tags 6

Figure 5: UML Activity Diagram of Exploit 7

Figure 6: Integer Types 14

Figure 7: Complete RDF Example 20

CMU/SEI-2005-TN-003

IV CMU/SEI-2005-TN-003

List of Tables

Table 1: Types of Software Vulnerabilities 4

Table 2: Illicit Control Transfer Attribute 12

Table 3: Compromised Memory Location and Description 13

Table 4: Functional Interface Properties 13

Table 5: Integer Range Error Classification Scheme 14

Table 6: Formatted Input/Output Classification Scheme 15

Table 8: Exploit Properties 17

Table 7: Vulnerability Properties 17

CMU/SEI-2005-TN-003

CMU/SEI-2005-TN-003

Abstract

Understanding vulnerabilities is critical to understanding the threats they represent. Vulnera-
bilities classification enables collection of frequency data; trend analysis of vulnerabilities;
correlation with incidents, exploits, and artifacts; and evaluation of the effectiveness of coun-
termeasures. Existing classification schemes are based on vulnerability reports and not on an
engineering analysis of the problem domain. In this report a classification scheme that uses
attribute-value pairs to provide a multidimensional view of vulnerabilities is proposed.
Attributes and values are selected based on engineering distinctions that allow vulnerabilities
to be exploited by a given technique or determine which countermeasures are effective. Suc-
cessful classification of vulnerabilities should lead to greater automation in analyzing code
vulnerabilities and supporting effective communication between geographically remote vul-

nerability handling teams and vendors.

CMU/SEI-2005-TN-003 V"

CMU/SEI-2005-TN-003

1 Introduction

Historically, vulnerabilities have been classified into broad categories such as buffer over-
flows, format string vulnerabilities, and integer type range errors (including integer over-
flows). These broad categories have two major failings, however. First, it is not always
possible to assign a vulnerability to a single category. Second, the distinctions are too general

to be useful in any detailed engineering analysis.

For example, the following function:

bool func(char *sl, int lenl,

char *s2, int len2) {

char buf[128];

if (1 + lenl + len2 > 128) return false;

if (buf) {
strncpy(buf, si, lenl);

strncat(buf, s2, len2);

}
return true;

}

contains a vulnerability in that lenl or len2 could be a negative number, allowing the length
check to be bypassed but still causing a buffer overflow in the strncpy () or strncat ()
functions. Is this an integer range value vulnerability because the integer range check was
bypassed, or is this simply a buffer overflow? Either categorization would be a disservice to

understanding the issues.

Understanding vulnerabilities is critical to understanding the threats they represent. Classifica-
tion of vulnerabilities allows collection of frequency data and trend analysis of vulnerabilities
but has not been regularly or consistently applied. Better and more comprehensive classifica-
tion of vulnerabilities can lead to better correlation with incidents, exploits, and artifacts and
can be used to determine the effectiveness of countermeasures. Understanding the characteris-
tics of vulnerabilities and exploits is also essential to the development of a predictive model

that can predict threats with a high correlation and significance.

CMU/SEI-2005-TN-003

1.1 Concepts
Before we can discuss a classification scheme it is important that we have a sufficiently pre-
cise definition of what it is that we are classifying. There have already been efforts to formally
define concepts such as vulnerability [Fithen 04] that will not be repeated here. For our pur-
poses, we define four key terms using concise and (hopefully) precise English:

A security flaw is a defect in a software application or component that, when
combined with the necessary conditions, can lead to a software vulnerability.

A vulnerability is a set of conditions that allows violation of an explicit or

implicit security policy.

An exploit is a piece of software or a technique that takes advantage of a secu-

rity vulnerability to violate an explicit or implicit security policy.

While these definitions may be too relaxed for some purposes, they are adequate for our pur-

poses here.

1.2 Objects and Roles
In general, a classification scheme takes the form that an object has an attribute that has a
value. The bold words represent nouns and the italics represent a relationship between the

nouns.

The nouns in our classification scheme can be artifacts such as a source code module, runtime
library, or executable program image, or they can be more abstract concepts like vulnerabili-
ties or security flaws. In any case, when defining attributes, it is important to be clear about
what object the attribute is describing; otherwise it is easy to confuse a description of an

exploit with a description of a vulnerability, for example.

In addition to showing the various types of objects for which properties can be attributed, Fig-
ure 1 illustrates the various actors and their associated roles. For example, a security analyst
might be primarily concerned with different properties of security flaws and how to identify
them. A programmer might be mainly concerned with the properties of the source code they
are developing or maintaining, what it does, and whether it contains security flaws. A vulnera-
bility analyst may primarily be concerned with analyzing vulnerabilities in existing and
deployed programs. For a vulnerability classification scheme to be widely adopted, it has to be

suitable by multiple users in multiple roles for multiple purposes.

CMU/SEI-2005-TN-003

*
Programmer

composed of

£ System
integrator i System

administrator s Network
administrator

Software
component

composed of Program
version

composed of
Systems

composed of
Networks

may
contain

Security flaw
can lead to

Vulnerability

*

Security
analyst

*

attacked
by

Vulnerability
analyst

Exploit

Artifact
analyst

Figure 1: Objects, Roles, and Relationships

1.3 Existing Approaches
There are a number of existing approaches for classifying vulnerabilities. Many of these

approaches are taxonomies.

A taxonomy is a system of classification that allows vulnerabilities to be uniquely identified.
The best know example is the science of systematics, which classifies animals and plants into

related groups.

Two major studies from the 1970s attempted to create taxonomies of security flaws. The
RISOS study [Abbott 76] focused on flaws in operating systems; the other, the Program Anal-
ysis (PA) study [Bisbey 78], included both operating systems and programs. Interestingly, the
taxonomies both presented were similar, in that the classes of flaws could be mapped to one
another. Since then, other studies have based their taxonomies on these results [Bishop 95,
Landwehr 94] (Table 1 illustrates another example of software vulnerabilities classification
from Landwehr, Bull, McDermott, and Choi). However, the classifications defined in these
studies are not "real" taxonomies in the sense that they fail to define classification schemes

that identify a unique category for each vulnerability.

Aslam's recent study [Aslam 95] approached classification slightly differently, through soft-
ware fault analysis (a decision procedure determines into which class a software fault is
placed). Even so, it suffers from flaws similar to those of the PA and RISOS studies.

CMU/SEI-2005-TN-003

Table 1: Types of Sottware Vulnerabilities

Intentional

Inadvertent

Malicious

Non-malicious

Trojan Horse
Non-replicating

Replicating (virus)

Trapdoor

Logic/Time Bomb

Covert Channel
Storage

Timing

Other

Validation Error (Incomplete/Inconsistent)

Domain Error (Including Object Reuse, Residuals, ...)

Serialization/aliasing (including race conditions, TOCTTOU errors)

Identification/Authentication Inadequate

Boundary Condition Violation (including resource exhaustion,...)

Other Exploitable Logic Error

Figure 2 illustrates a subset of the existing CERT® l Vulnerability Taxonomy. Unfortunately,
this scheme also has significant flaws that make it unsuitable for continued use. Vulnerabilities
are included in multiple categories, making it impossible to determine frequency data. The
classification scheme is based on vulnerability reports and not on an engineering analysis of
the problem domain. There is no clear correlation between these categories and avoidance
strategies that can be used to prevent or limit vulnerabilities. Although approximately 800 vul-
nerabilities have been classified according to this scheme, the implementation is poorly

designed and is now largely abandoned.

Vulnerability

3 I 1
Design error | Implementation error | | User interface] | Other problems

Privileged
programs

':■■ /-Truste-.;-^
untrustworthy

information

Timing
window

SUID

'Privileged
.program .'■
subject to
inheritance

>| Arguments |

»| Network protocol

- Basic .:.-■
programming

practices

Check file
exists, then
, open file

K Infrastructure

Trusts something
not designed to
support that trust

Buffer

Reusable
resources not
properly reset
between users

; Writes a file::,
-that can be
replaced with;

a symlink

Figure 2: CERT Vulnerability Taxonomy (subset)

1. CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2005-TN-003

1.4 Properties
The classification scheme described in this report uses attribute-value pairs instead of a hierar-

chical taxonomy. Once an object has an attribute with a defined value it becomes a property of
that object. Attribute-value pairs eliminate the problem of having vulnerabilities that fit into
multiple classifications and thus invalidate frequency data. Instead, multiple attribute-value
pairs can be associated with a software component to provide an overall picture of the security

of that component.

A software program, of course, has many attributes. These attributes include size, complexity,
performance, reliability, robustness and other quality attributes. For our purposes we are only
interested in attributes that characterize the overall vulnerability of a program. These attributes
can represent security flaws (that may or may not lead to vulnerabilities) as well as qualities of
the overall component that lead to enhanced security. Of particular interest are attributes that

are associated with known exploits and known mitigation techniques.

Exploits and Vulnerabilities
Figure 3 contains a sample program with some associated attribute value pairs. This is not a
real program but a simple example of some code with obvious vulnerabilities. In particular, the
program contains multiple security flaws, including an unbounded string copy and insufficient
input validation on input arguments. Another attribute of this program is that it uses a memory
manager that uses boundary tags, such as Doug Lea's malloc or Microsoft's RtlHeap. These
two security flaws, combined with the use of a memory manager that uses boundary tags,

leads to a potential vulnerability.

Malloc="uses
boundary tags"
Memory=
"contiguous"

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.}

256)

#include <stdlib.h>
#include <string.h>
int main(int arge, char * argv[]
static char command[256];
char *first, *second;
strncpy(command, argv[0] ,
first = malloc(666);
second = malloc(12);
strcpy(first, argv[l])
free(first);
free(second);
return(0);

) {

Argument="string"
Flaw="insufficient
input validation"

Flaw="unbounded copy"
Location="heap"

Figure 3: Sample Vulnerability Attributes

CMU/SEI-2005-TN-003

Exploits and vulnerabilities are, of course, inherently entwined. For example, the sample pro-
gram in Figure 3 can be exploited by passing a malicious argument greater than the size of the
first memory chunk. In this case, the unbounded string copy on line [9] will overwrite the end
of the buffer and boundary tags at the end of the first chunk and at the front of the second
chunk, as illustrated by Figure 4. These boundary tags can be overwritten in a manner that will
cause an arbitrary address to be overwritten by another arbitrary address on the next call to
free (). As a result, an attacker can exploit this vulnerability to transfer control to arbitrary
code that may be part of this string or inserted elsewhere in memory. This particular exploit is
diagramed in Figure 5 as a Unified Modeling Language (UML) activity diagram.

Size of previous chunk, if allocated

Size of chunk, in bytes

666 bytes

Size of chunk

Size of previous chunk, if allocated

Size of chunk, in bytes
 ESSE

12 bytes

Size of chunk

Figure 4: Overwriting Boundary Tags

The activity diagram for the exploit illustrates the relationship between the exploit and the vul-
nerable program. In particular, each activity is tagged with an attribute-value pair that repre-
sents the necessary preconditions for the exploit to succeed. Not surprisingly, these

preconditions all exist in the vulnerable program from Figure 3.

CMU/SEI-2005-TN-003

Malicious string
JR passed as argument*^

Shell / \
code

Requires:
Argument="string"
Flaw="insufficient
input validation"

installed
in heap

Heap buffer
overflow

Requires:
Flaw="unbounded copy"
Data location="heap"

p Boundary tags
corrupted^ Reauires:

Requires:
Flaw="insufficient input
validation"
Location="heap"

malloc="uses boundary tags"
Memory="contiguous"

6 Control passed to shell code

Requires:
Malloc-implementation="dlmalloc"

Figure 5: UML Activity Diagram of Exploit

The relationship between vulnerable programs and exploits has important consequences. First,
it makes sense to develop a common set of attributes (and valid values) that can simulta-
neously be used to describe both vulnerabilities and exploits. Second, if a database of
attributes existed for programs with known vulnerabilities or other security implications, it
would be possible to automatically produce a list of programs that might be vulnerable to a
known exploit by matching the attributes required by the exploit with the known attributes for
a program. Theoretically, this could also be used to evaluate existing programs against new
(previously unknown) vulnerabilities, presuming the relevant attributes required by this

exploit have been recorded.

Mitigations and Vulnerabilities

Relationships also exist between vulnerabilities and mitigations (and between exploits and
mitigation techniques as well). Mitigations2 include methods, techniques, processes, tools, and
runtime libraries that can prevent or limit exploits against vulnerabilities. Mitigation may work

by

• eliminating a property of a program that represents a security flaw or other precondition

necessary to create a vulnerability

• preventing an exploit from achieving a required property

2. Alternatively referred to as countermeasures or avoidance strategies.

CMU/SEI-2005-TN-003

As a result, mitigations can be implemented on different objects at different levels of abstrac-
tion. For example, a mitigation may be applied at the source code level that eliminates a secu-
rity flaw and the associated vulnerability, or a work-around can be applied at a system or
network level to prevent the security flaw from being exploited (also eliminating the vulnera-

bility).

There are many examples of each type of mitigation technique. For example, it is possible on
some platforms to install operating system patches to create non-executable stack segments or
non-executable heap segments. This mitigation technique does not modify any of the proper-
ties of the vulnerable program illustrated in Figure 4, but it does affect the exploit diagramed
in Figure 5. By preventing the heap segment from containing an executable, this particular
mitigation technique prevents execution of the shell code that is installed in the heap. It is
important to note in this case that preventing this one exploit by no means makes this code

"secure," as there are other variants of this exploit that could still succeed.

An example of a mitigation that works by modifying the properties of the vulnerable program
would be replacing calls to s trcpy () with calls to strncpy (). In the case of the vulnera-
ble program illustrated in Figure 4, this would eliminate the "unbounded copy" flaw and also

eliminate the vulnerability.

The relationships between the properties displayed by software programs, those required by
exploits, and those eliminated or prevented by mitigations increases the value of determining
and recording these properties. By defining properties of vulnerable code, exploits, and miti-
gation techniques we can better determine which mitigation strategies will secure a vulnerable

program against which exploits.

1.5 Classification Issues
Issues that further complicate classification include levels of abstraction and viewpoint
[Bishop 96]. The xterm logging vulnerability described in CERT Advisory CA-1993-17 can

be used to illustrate both issues.

The xterm program emulates a terminal under the XI1 window system running as root on most
UNIX systems. It enables the user to log all input and output to a file. If the file does not exist,
xterm creates the log file and makes it owned by the user. If the file already exists, xterm
checks that the user can write to it before opening the file. As any root process can write to any
file on the system, the extra check is necessary to prevent a user from having xterm append log
output to (say) the system password file and gain privileges by altering that file.

The following code fragment opens the file for writing when a user logs I/O to an existing file:

CMU/SEI-2005-TN-003

if (access("/usr/rcs/out", W_OK) == 0){
fd = openp/usr/rcs/out", 0_WRONLY | 0_APPEND) ;

The semantics of the UNIX operating system cause the name of the file to be loosely bound to
the data object it represents, and the binding is asserted each time the name is used. If the data
object corresponding to /usr/rcs/out changes after the access but before the open, the
open does not open the file checked by access. During that interval an attacker deletes the file
and links a system file (such as the password file) to the name of the deleted file. Then xterm
appends logging output to the password file. At this point, the user can create a root account

without a password and gain root privileges.

At the lowest level of abstraction this vulnerability could be classified as an input validation
problem, since the programmer fails to ensure that the object being validated is the same
object the (potentially) insecure operation is performed on. At the next higher level of abstrac-
tion, this vulnerability could be viewed as a race condition vulnerability. At an even higher
level of abstraction, this vulnerability could be classified as a logic or design error, since a

resource (in this case, the file) can be deleted while in use.

Viewpoint is also important when classifying a vulnerability. From the perspective of an oper-
ating system developer, the vulnerability may be classified as a lack of required atomicity in
the operations. Since changing the OS is not an option for an application developer, this prob-
lem may be classified as a problem with unnecessarily elevated privileges.

1.6 Credentials
Since experience has proven that taxonomies are not particularly conducive to classifying vul-
nerabilities, the classification scheme proposed in this report is based on attribute-value pairs
instead. Attributes and values are selected based on engineering distinctions that allow vulner-

abilities to be exploitable by a given exploitation technique or prevent them from being
exploitable and that allow countermeasures to work or prevent them from working. In addi-
tion, we borrow the idea of credentials from Mary Shaw [Shaw 96] to indicate the confidence
we have in the correctness of each attribute-value pair. In this way, credentials allow us to dif-

ferentiate between knowledge and information.

Definition: Credential.

A credential is a triple <property, value, confidences where prop-
erty is the name of the security property, value is the value of this
property for a particular application, and confidence is a measure
of the confidence we have in this information.

CMU/SEI-2005-TN-003

An example of a credential might be <security-flaw, unbounded-string-copy, third-party-
report>. This credential states that a software component contains a security flaw that can be
classified as an unbounded string copy and that this information has been reported by a third
party, which implies a level of confidence. For example, experimentally validating a finding in
a lab might promote the highest degree of confidence, followed by a vendor confirming an
issue, and so on down to "someone I know thought they read that on a news group." Creden-
tials are meant to expose the distinction between knowledge and information, or what a com-
ponent really does versus what we think it does. How knowledge about security properties is

obtained affects the confidence we have in that knowledge.

1.7 Attribute Sets
When a classification scheme is designed to support multiple goals, it can become cumber-
some for an individual user who intends to use it for a single purpose. The ability to define sets
of related properties that are appropriate for different user roles can make a vulnerability clas-
sification less cumbersome for use by a particular individual to achieve a particular goal. For
example, it may make sense for a development organization to differentiate between attributes

that are related to runtime, linkage, and source code.

The runtime category refers to properties of a program that exist once the program has been
deployed into a particular environment. The same program image can have different properties
when installed in different environments (for example, as a result of dynamic runtime linkage).
The runtime category is primarily of interest to system administrators who need to evaluate a
product for actual vulnerabilities and not potential vulnerabilities or security flaws.

The linkage category refers to the properties of a program that exist once the program has been
linked into an executable image but not yet deployed. Properties in this category are never
actual vulnerabilities, since the software is not deployed. This category of properties includes
potential vulnerabilities and security flaws resulting from source code being compiled and
(statically) linked to existing libraries. A good example of linkage properties can be seen in the
example from Section 1.4. In that example, the program is only vulnerable when the source
code is linked with a vulnerable memory manager. If the vulnerable library or component is
statically linked, this property belongs in the linkage category. If the vulnerable library or
component is dynamically linked, this property belongs in the runtime category. Linkage prop-
erties are of interest to system integrators and system administrators (when they can result in

an actual vulnerability).

The source code category refers to properties of the source code before compilation and link-
age. Properties in this category are primarily software flaws. For example, a C++ class or
method may contain a buffer overflow. Because the method containing the security flaw is not
used or only called using static data, there is no possibility of an actual vulnerability occurring,

CMU/SEI-2005-TN-003

so the problem is assigned a lower priority and not resolved. However, if this same C++ class
is reused in another program, or the existing program is modified to use this method in an inse-
cure manner, the result could easily become a fielded vulnerability. Source code properties are
of primary interest to software engineers and quality assurance personnel, but may also be of
interest to system administrators when these properties lead to runtime vulnerabilities.

Other attribute sets can be defined for other user roles, including vulnerability analyst, triage,

and vulnerability handler.

CMU/SEI-2005-TN-003 11

2 Security-Related Software Attributes

This section describes the properties of objects that are critical to understanding software secu-
rity. These properties are based on an in-progress evaluation of C/C++ implementation-level
vulnerabilities and hence are inherently incomplete. No attempt has been made in this section
to classify vulnerabilities resulting from design errors, insecure configurations, incorrect uses

of cryptography, and other leading causes of vulnerabilities.

2.1 Source Code
Security flaws that can lead to software vulnerabilities exist in, and are normally repaired in,
source code. Source code is primarily the responsibility of programmers, who are responsible

for its development and maintenance.

Table 2 shows the illicit control transfer mechanism attribute of C and C++ source code. The
values for this attribute are known mechanisms for an attacker to cause a program to execute
arbitrary code. These mechanisms readily correlate to commonly used vulnerability classes
(for example, buffer overflows are an example of writing beyond array bounds). Writing freed
memory, freeing unallocated or non-heap memory, and user-supplied format strings are all
higher level mechanisms for accomplishing a single-purpose: writing an arbitrary value to an

arbitrary address. The values listed in Table 2 are easier to detect and label in C and C++
source code. This is the first example in which we have made a decision regarding the appro-

priate level of abstraction to expose in our classification scheme.

Table 2: Illicit Control Transfer Attribute

Attribute

Illicit control transfer
mechanism

Values

Writing beyond array bounds, writing freed memory, freeing
unallocated or non-heap memory, user-supplied format string

We use this as a starting point for our analysis, since gaining access to one of these illicit con-

trol transfer points is the enabling mechanism for most exploits.

CMU/SEI-2005-TN-003
12

Memory Properties
All the illicit control transfer mechanisms listed in Table 2 involve overwriting memory. The
principle differences are where this memory is located and how it is overwritten. Although the
exact layout of process memory is operating system specific, generally speaking memory
exists in either the stack, heap, or data segments. A successful exploit must overwrite memory
for a purpose. The purpose may be to modify the value of a variable, data pointer, function

pointer, or return address on the stack. Modification of a a variable may be used to change
some behavior of a program, possibly making it vulnerable to further attack. Modification of a
data pointer, function pointer, or return address can all be used to execute arbitrary code. These

attributes and valid values for these attributes are shown in Table 3.

Table 3: Compromised Memory Location and Description

Attribute

Overwritten memory
location

Data type modified

Values

stack segment, heap segment, data segment

variable, data pointer, function pointer, return address

Functional Interface
In many cases, software vulnerabilities result from the incorrect use of a particular function or
class of functions. This property is of interest because it can often be corrected by using a dif-
ferent but related function or by using an entirely different data abstraction that provides a sim-
ilar capability. Table 4 defines properties for insecurely used functions. The attributes are

common flaws, while the values are the actual function names.

Table 4: Functional Interface Properties

Attribute

Unbounded memory copy

Incorrect length

User-provided sensitive argument

Values

strcpy (), memcpy (), sprintf (), etc.

strncpy (), snprintf (), etc.

printf (), setuid (), etc.

A mapping to the functional category (e.g., string manipulation, dynamic memory manage-
ment, formatted I/O, file I/O) can be made based on the value of the insecurely used function.

CMU/SEI-2005-TN-003 13

Integer Operations
Fairly recently, a number of vulnerabilities have been attributed to exceptional conditions
related to integer operations or a failure to adequately constrain the range of an integer value.
These security flaws cannot be directly exploited but generally allow an attacker to create or
access one of the illicit transfer control mechanisms listed in Table 2, such as a buffer over-
flow. The effected integer is often used as sizes, array indices, or loop counters. Integers can

also be multipurpose or used in other ways.

Integer Types

Standard integer types Extended integer types

Standard signed
integer types

Signed
integer types

Extended signed
integer types

1 1

Extended unsigned
integer types

Standard unsigned
integer types

Unsigned
integer types

Figure 6: Integer Types

It is also useful to determine whether the integer vulnerability is the result of an exception con-
dition or is simply the result of insufficient range checking. The possible error conditions are
overflow, sign, truncation, and insufficient range checking. (If the vulnerability is the result of
faulty logic, a "no error" condition exists and the error condition is specified as none.) Another
important characteristic about an integer type range exploit is the type of the integer being
attacked. Integers are organized into sets, as illustrated in Figure 6. The size and signedness of

the vulnerable integer are also classified.

Table 5: Integer Range Error Classification Scheme

Property

Integer application

Integer error

Integer set

Integer signedness

Values

array index, loop counter, size, multipurpose, other

overflow, sign, truncation, insufficient range checking

standard, extended

signed, unsigned

14
CMU/SEI-2005-TN-003

Table 5: Integer Range Error Classification Scheme

Property Values

Standard integer type char, short int, int, long int, and long long int

Extended integer type int8_t, uint24_t, int_least32_t, uint_leastl6_t, int_fastl6_t,
uint_fast64_t, intptr_t, uintptr_t, intmax_t, uintmax_t, etc.

Table 5 lists the classification properties and possible values. The integer range error classifi-
cation can be used to evaluate whether a vulnerability can be prevented by a particular avoid-

ance strategy.

Format String Vulnerabilities
Format string vulnerabilities can be exploited to run arbitrary code on a machine without over-
flowing a buffer, so there are clearly cases where these vulnerabilities are a uniquely separate

class.

Format string exploits work by taking either partial or complete control of the format string.
Exploits that do not control the format string are normally buffer overflows. Formatted input/
output exploits should also be differentiated between input and output functions because each
group of functions shares a different specification and (typically) different implementations.
Attributes and associated values related to format string vulnerabilities are listed in Table 6.

Table 6: Formatted Input/Output Classification Scheme

Attribute

Input/output function

Format string control

Values

input, output

none, partial, complete

2.2 Software Components
Software components are the elements from which larger software programs are composed
[Wallnau 01]. Software components include shared libraries such as Dynamic Link Libraries
(DLLs), ActiveX controls, Enterprise JavaBeans, and other compositional units. Software
components may be linked into a program or dynamically bound at runtime. Software compo-
nents, however, are not directly executed by an end user, except as part of a larger program.
Therefore software components cannot have vulnerabilities because they are not executable

outside of the context of a program.

CMU/SEI-2005-TN-003 15

2.3 Program Versions
Program versions are actual executable images that can be installed and run on a system. Prod-
ucts, on the other hand, are a marketing abstraction that encompasses both past and future ver-
sions of a program. Therefore, program versions can have vulnerabilities, while products

cannot.

2.4 Mitigations
A mitigation is a solution for a software flaw or vulnerability or a work-around that can be
applied to prevent exploitation of a vulnerability. At the source code level, mitigations may be
as simple as replacing an unbounded string copy operation with a bounded one. At a system or
network level, a mitigation might involve turning off a port or filtering traffic to prevent an

attacker from accessing a vulnerability.

Identifying the attributes of mitigations is an important step in determining which vulnerabili-

ties can be resolved by which mitigations.

2.5 Security Flaws
Security flaws are defects in source code or software components that can lead to software
vulnerabilities. Security flaws have their own properties that describe the possible conse-
quence of these flaws if exposed as vulnerabilities in a program. An understanding and analy-
sis of security flaws is important to determine which programs may contain related
vulnerabilities and what the possible consequence of these vulnerabilities may be.

2.6 Vulnerability Properties
Programs, systems, and networks exhibit vulnerabilities. Vulnerabilities are of interest to vul-
nerability analysts, vulnerability handlers, and system and network administrators. The under-
lying vulnerabilities that cause the vulnerabilities are of interest to software developers. As a
result, the interesting properties of vulnerabilities are significantly different than the interest-
ing properties of software flaws. Table 7 enumerates these attributes and associated values.

2.7 Exploit Properties
For the exploit to execute code, the code must already exist in the address space of the vulner-
able process (presumably in the code segment) or it must be injected. Code could be injected
into the stack, heap, or data segments. Where the code is injected can be relevant if one or
more memory segments is made to be non-executable. Exploits can also be differentiated

16 CMU/SEI-2005-TN-003

Table 7: Vulnerability Properties

Attribute Values

Impact

Affected product

Solution

Extent known

Required to exploit

mislead application users, denial of service, crash system,
destroy data, read protected information, create files used by
others, gain access to many users, obtain super user/administra-
tive access

status unknown, vulnerable, not vulnerable

Upgrade, apply patch, use an alternative product

restricted, solutions released, general concept public, public

access to privileged account, trusted host, nearby host, local
access to user account, any remote user using an uncommon ser-
vice, any remote user using a common service (e.g., Web, FTP)

based on their consequence. Exploits can be used to crash a program, read memory, write

memory, or execute arbitrary code.

These exploit attributes and valid values for these attributes are shown in Table 8.

Table 8: Exploit Properties

Attribute

Exploit code

Exploit code location

Consequence

Values

injected, existing

stack segment, heap segment, data segment

crash program, read memory, write memory, execute arbitrary
code

CMU/SEI-2005-TN-003 17

3 Representation and Automation

This section describes possible representations for the classification of properties related to

vulnerabilities, software flaws, exploits, and other security-related software objects.

3.1 Representing Properties
The Resource Description Framework (RDF)3 is a framework for representing information in

the Web. RDF [Klyne 04] was developed for use in

• Web metadata: providing information about Web resources and the systems that use them
(e.g., content rating, capability descriptions, privacy preferences, etc.)

• applications that require open rather than constrained information models (e.g., scheduling
activities, describing organizational processes, annotation of Web resources)

• doing for machine processable information (application data) what the Web has done for
hypertext: allow data to be processed outside the particular environment in which it was

created, in a fashion that can work at Internet scale

• interworking among applications: combining data from several applications to arrive at

new information

• automated processing of Web information by software agents: The Web is moving from
having just human-readable information to being a world-wide network of cooperating
processes. RDF provides a world-wide lingua franca for these processes.

RDF is designed to represent information in a minimally constraining, flexible way. It can be
used in isolated applications, where individually designed formats might be more direct and
easily understood, but RDF's generality offers greater value from sharing. The value of infor-
mation thus increases as it becomes accessible to more applications across the entire Internet.

3. See http://www.w3.org/RDF/.

18 CMU/SEI-2005-TN-003

In short, RDF allows us to represent statements of the form "subject predicate object," where
"predicate" indicates the relationship between subject and object. For example, an individual

initially triaging a vulnerability report might add the following data:

John Smith reported VU#999999

VU#999999 describes a vulnerability

VU#999999 describes a buffer overflow

VU#999999 affects the foo html library

while because of prior work, there might already be a body of knowledge captured by this:

The foo html library is a component of the IE rendering engine

The IE rendering engine is an implementation of an HTML rendering engine

The IE rendering engine is a component o/Internet Explorer

Internet Explorer is an implementation of a Web browser

Internet Explorer is a product o/Microsoft

Firefox is an implementation of a Web browser

Firefox is a product of the Mozilla Foundation

HTML rendering engines are a component o/Web browsers

Thus, given the above, an automated system could infer that Microsoft should be alerted to
this vulnerability and that further investigation may be warranted by the Mozilla Foundation to

ascertain whether Firefox is affected by VU#999999.

On further analysis, perhaps the analyst discovers

• VU#999999 is remotely exploitable

which, coupled with the previous existing knowledge, as well as the following:

• remote exploitation implies virus potential

• Internet Explorer is a widespread product

• vulnerabilities in widespread products are at high risk of exploitation

allows an automated system to infer that VU#999999 has significant risk of appearing in a

future virus, as shown in Figure 7.

The Web Ontology Language (OWL) [McGuinness 04, Patel-Schneider 04] extends RDF by
providing a standardized vocabulary with which one can describe a number of semantically
meaningful relationships (for example, "x hasParent y." "x hasSibling z."—which allows for

automated reasoning to deduce that "z hasParent y").

Although much work would need to be done to realize a finished product, we believe that the
classification scheme described in this paper could be represented using RDF and OWL mete-

19
CMU/SEI-2005-TN-003

data such that emerging tools in that space could be used to navigate and mine vulnerability

data.

remotely
A exploitable

is
\

VU#999999

 r-
aftccss

■g

1

■

John
Smith

I \
▼ describes

f—

foo html
library

L X Buffer
overflow

component of

Internet ^
Explorer

o
c a . c - a
E
8

IE
rendering

engine

Implements

implements

Microsoft

Web
Browser

has
HTML

rendering
engine

implements
 L

1
Firefox produced by *■

 I
Mozilla

Foundation

Figure 7: Complete RDF Example

3.2 Comparative Analysis of Vulnerabilities
System and network administrators, vendors, service providers, researchers, and computer
security incident response teams (CSIRTs) regularly receive new vulnerability reports whose

20
CMU/SEI-2005-TN-003

severity needs to be assessed. The information available is almost always, by necessity, incom-
plete. Regardless, there is an urgent need to prioritize handling of the vulnerability. Could a
database of existing vulnerabilities with known properties be used to assess the new report?

Applying existing vulnerability knowledge requires that we can compare the new vulnerability
to the set of already known vulnerabilities. First, let's consider the general problem of describ-
ing the similarity of two vulnerabilities. Assuming that all attributes are binary (i.e., the vul-
nerability has or does not have a particular attribute), we can represent the set of attributes for
a vulnerability as a bitmap. Doing so allows us to compare two vulnerabilities based on their
attribute sets by XORing their bitmaps. This is equivalent to calculating the Hamming Dis-

tance4 between the two bitmaps.

For example, given a classification system with fivebinary attributes, two vulnerabilities, Vull

and Vul2, can be compared as follows:

OHIO = Vull's bitmap
10110 = Vul2's bitmap

11000 = XOR(Vull,Vul2)

Vull and Vul2 differ in two of five attributes, so the hamming distance is calculated as (2/5) =
0.4. To access a vulnerability report against a database of N vulnerabilities, it may be neces-
sary to to calculate N2 distances. However, it is conceivable that the problem could be reduced
if it were possible to identify landmark vulnerabilities that could be used as reference points.
This would allow for a new vulnerability to be compared to some subset of all vulnerabilities
to assess its relative position in the vulnerability space. The number of landmarks that would
be required is one more than the dimensionality of the data, but since we don't have any actual
data, we cannot make any statements regarding the number of dimensions required to repre-
sent it. (The individual attributes in a set are unlikely to be completely orthogonal, thus it's not

necessarily true that 10 attributes implies 10 dimensions.)

Now, a new vulnerability is reported, which we'll call Vul3. We don't know much about Vul3
yet, but we can at least specify three of its attributes, so we represent its bitmap as

101?? = Vul3's bitmap

4. In information theory, the Hamming distance is the number of positions in two strings of equal
length for which the corresponding elements are different. Put another way, it measures the num-
ber of substitutions required to change one into the other. It was named after Richard Hamming.
The Hamming distance is used in telecommunication to count the number of flipped bits in a
fixed-length binary word, an estimate of error, and so is sometimes called the signal distance. It
corresponds to the weight (number of ones) in the XOR of the words, or. to the Manhattan dis-
tance between two vertices in an n-dimensional hypercube, where n is the length of the words.

CMU/SEI-2005-TN-003 21

Where "?" indicates the "don't know" bits.

Even given incomplete information about Vul3, we can still estimate its distance from Vull

and Vul2 by calculating the possible range of values:

OHIO = Vull's bitmap 10110 = Vul2's bitmap

101?? = Vul3's bitmap 101?? = Vul3's bitmap

110?? = XOR(Vull,Vul3) 000?? = XOR(Vul2,Vul3)

The distance between Vull and Vul3 is at least 0.4 (2/5 of the bits differ), and its maximum
distance is 0.8 (if both unknown bits turn out to be different, too). Similarly, Vul2 and Vul3
have a minimum distance of 0 and a maximum distance of 0.4. It is apparent even before the

other attributes are known that Vul3 has more in common with Vul2 than with Vull.

Earlier we assumed that all attributes are binary, in which case a simple XOR operation across
a bitmap would suffice to determine the distance between two vulnerabilities. The more gen-
eral case where attributes may take on a range of values can be addressed in one of two ways:

1. Multivalued attributes can be translated into a series of binary attributes, in which case the

operation described above would still apply, or

2. A function can be defined for each non-binary attribute to calculate the match. In the
binary version, attributes either matched (a 0 bit in the XOR result), or didn't (a 1 bit in the
XOR result). But recall that the distance metric was based simply on summing up the
number of Is in the XOR result. If instead we described a match as having a value
between 0 and 1, then we could represent a partial match for a non-binary attribute. To cal-
culate the distance, one would sum up the partial matches, and the distance calculation is
still given by the sum of the matches (partial or complete) divided by the number of

attributes.

Given sufficient vulnerabilities with known qualities, it is possible to correlate attributes. For
example, it is possible to calculate the probability that a vulnerability will have high severity
given that a particular attribute is, or is not, set (the same sort of analysis could be done for sets
of attributes). Given our previous example, knowing the severity of a vulnerability similar to
Vul3 allows a researcher to approximate the severity of Vul3. It may also be possible to infer
the likelihood that a given vulnerability will be exploited by a particular type of artifact (e.g.,

bot, worm, virus).

CMU/SEI-2005-TN-003
22

Conclusions

Vulnerability classification must be based on solid engineering analysis to be useful in deter-
mining the threat represented by the vulnerability and, consequently, predicting any future

threat.

Classification can enable real-world benefits, including automatic assessment of threat posed
by vulnerabilities and assessment of mitigation strategies and techniques. Formalizing classifi-
cation and analysis of vulnerabilities should make it easier to share information among geo-
graphically distributed organizations. Vulnerability analysts create formal descriptions of
known exploits. Vulnerability remediation specialists can then create formal descriptions of
suspect source code and analyze it using tool sets (reducing the level of experience required).

Today vulnerability analysis is ad hoc and depends on the skills and inclinations of vulnerabil-
ity remediation specialists. Vulnerability analysis process should reduce dependency on
knowledgeable analysts. Association of values with attributes becomes the goal of analysis.
Unidentified traits result in an extension or reevaluation of the classification scheme.

Attributed code segments can be automatically analyzed against the classifications to deter-
mine whether they are vulnerable to any known class of exploit. Code previously considered
not vulnerable can be automatically reevaluated when new exploits are discovered. Mitiga-
tions can be evaluated to determine which exploits are prevented and which exploits are not

prevented.

Vulnerability classification will allow increased standardization of vulnerability analysis,
which in turn will allow for greater sharing of information and opportunities for automation.

CMU/SEI-2005-TN-003 23

CMU/SEI-2005-TN-003
24

tun

References

[Abbott 76]

[Aslam 95]

[Bisbey 78]

Abbott, R. P.; Chin, J. S.; Donnelley, J. E.; Konigsford, W. L.;
Tokubo, S.; & Webb, D. A. "Security Analysis and Enhance-
ments of Computer Operating Systems." NBSIR 76-1041, Insti-
tute for Computer Sciences and Technology, National Bureau of

Standards, April 1976.

Aslam, T. "A Taxonomy of Security Faults in the UNIX Operat-
ing System." Master of Science thesis, Department of Computer

Sciences, Purdue University, 1995.

Bisbey, R. II & Hollingsworth, D. Protection Analysis Project

Final Report (ISI/RR-78-13, DTIC AD A056816). Marina del
Rey, CA: University of Southern California Information Sciences

Institute, 1978.

[Bishop 95]

[Bishop 96]

[CCPSO 99]

[Fithen 04]

Bishop, M. A Taxonomy of UNIX System and Network Vulnera-

bilities" (Technical Report 95-10). Davis, CA: Department of
Computer Science, University of California at Davis, 1995.

Bishop, Matt & Bailey, David. A Critical Analysis of Vulnerabil-
ity Taxonomies (CSE-96-11). http://seclab.cs.ucdavis.edu/
projects/vulnerabilities/scriv/ucd-ecs-96-11 .pdf (September

1996).

Common Criteria Project Sponsoring Organizations. Common
Criteria for Information Technology Security Evaluation, Part 1:
Introduction and General Model. CCIMB-99-031 Version 2.1,
August 1999. http://niap.nist.gov/cc-scheme/cc_docs/

cc_v21_partl.pdf.

Fithen, William L.; Hernan, Shawn V.; O'Rourke, Paul R; Shin-
berg, David A. "Formal Modeling of Vulnerability." Bell Labs

Technical Journal 8, 4 (February 5, 2004): 173-186.

CMU/SEI-2005-TN-003 25

[Klyne 04]

[Landwehr 94]

[McGuinness 04]

[Patel-Schneider 04]

[Shaw 96]

[Wallnau 01]

Klyne, Graham & Carroll, Jeremy, eds. Resource Description

Framework (RDF): Concepts and Abstract Syntax, http://
www.w3.org/TR/rdf-concepts/ (February 2004).

Landwehr, C. E.; Bull, A. R.; McDermott, J. P.; & Choi, W. S. "A
Taxonomy of Computer Program Security Flaws." Computing

Surveys 26, 3 (September 1994): 211-255.

McGuinness, Deborah L. & van Harmelen, Frank. OWL Web
Ontology Language Overview. http://www.w3.org/TR/owl-fea-

tures/ (February 2004).

Patel-Schneider, Peter F; Hayes, Patrick; & Horrocks, Ian. OWL

Web Ontology Language Semantics and Abstract Syntax.
http://www.w3.org/TR/owl-semantics/ (February 2004).

Shaw, Mary. "Truth vs. Knowledge: The Difference Between
What a Component Does and What We Know it Does," 181-185.
Proceedings of the 8th International Workshop on Software Spec-

ification and Design. Schloss Velen, Germany. March 22-26,
1996. Los Alamitos, CA: IEEE Computer Society Press, 1996.

Wallnau, Kurt C; Hissam, Scott A.; & Seacord, Robert C. Build-
ing Systems from Commercial Components. Boston, MA: Addi-

son-Wesley, June 2001 (ISBN: 0201700646).

26
CMU/SEI-2005-TN-003

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing mstructions searching ex sting
data sources gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comrnents regarding this burden estimate
ofahv other alpectoHh^ collection of information, including suggestions for reducing this burden, to Washington Headquarters Services Directorate for intamrton
Operation*r^SImports' 12?5 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

January 2005

4. TITLE AND SUBTITLE

A Structured Approach to Classifying Security Vulnerabilities
6. AUTHOR(S)

Robert C. Seacord & Allen D. Householder
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

REPORT TYPE AND DATES
COVERED

Final
5. FUNDING NUMBERS

F19628-00-C-0003

PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-003

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.D DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Understanding vulnerabilities is critical to understanding the threats they represent.
Vulnerabilities classification enables collection of frequency data; trend analysis of
vulnerabilities; correlation with incidents, exploits, and artifacts; and evaluation of the
effectiveness of countermeasures. Existing classification schemes are based on vulnerability
reports and not on an engineering analysis of the problem domain. In this report a
classification scheme that uses attribute-value pairs to provide a multidimensional view of
vulnerabilities is proposed. Attributes and values are selected based on engineering
distinctions that allow vulnerabilities to be exploited by a given technique or determine which
countermeasures are effective. Successful classification of vulnerabilities should lead to
greater automation in analyzing code vulnerabilities and supporting effective communication
between geographically remote vulnerability handling teams and vendors.

14. SUBJECT TERMS

vulnerability classification, exploit classification, vulnerability
properties, vulnerability attributes

17. SECURITY
CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN754ö-Öl-28Ö-5bOO

18. SECURITY
CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

38
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard l-orm 298 (Hev. 2-1
Proscribed by ANSI Std. 239-18
298-102

